MATH 2028 - Integration on bounded sets

So far, we have only talk about how to integrate bod functions defined on a rectangle.

GOAL: Define the integral of f over a bod subset $\Omega \subseteq \mathbb{R}^{n}$.

This can be done by a simple extension process. Let $f: \Omega \rightarrow \mathbb{R}$ be a bod function defined on a bod subset $\Omega \subseteq \mathbb{R}^{n}$. We can define its extension $\bar{f}=\mathbb{R}^{n} \rightarrow \mathbb{R}$ to a bod function on the whole \mathbb{R}^{n} by

$$
\hat{f}(x)= \begin{cases}f(x) & \text { if } x \in \Omega \\ 0 & \text { if } x \& \Omega\end{cases}
$$

Def": A bad function $f: \Omega \rightarrow \mathbb{R}$ is integrable on a bod subset $\Omega \subseteq \mathbb{R}^{n}$ if \exists rectangle $R \supseteq \Omega$ s.t. the extension \bar{f} is integrable on R. In this case, we define $\int_{\Omega} f d V=\int_{R} \bar{f} d V$.

Remark: The definition above seems to depend on the choice of the rectangle R containing Ω. The Lemma below makes the definition unambiguous.

Lemma: Suppose R and R^{\prime} are two rectangles in \mathbb{R}^{n} containing Ω. Then, \bar{f} is integrable on \mathbb{R} if and only if \bar{f} is integrable on R^{\prime}; moreover we have $\int_{R} \bar{f} d V=\int_{R^{\prime}} \bar{f} d V$
Proof: It suffices to consider the case $R^{\prime} \supseteq R \supseteq \Omega$. (Ex: Why?) Since $\bar{f} \equiv 0$ outside Ω. the set of discontinuities of \bar{f} is contained inside R and has measure zew of \bar{f} is integrable on R (or R ').

$\int \bar{f}=0$	$\int \bar{f}=0$	$S \bar{f}=0$
$\int \bar{f}=0$	\boldsymbol{R}^{\prime}	
	Ω	
$\boldsymbol{R} d v$		
$\int \bar{f}=0$		$\int_{\bar{f}}=0$

The last assertion follows by a sub-division of R^{\prime} into sub-rectangles as above.
\qquad
Recall that a continuous function $f: R \rightarrow \mathbb{R}$ on a rectangle R is always integrable. This is Not always true for cts functions defined on a bod subset $\Omega \subseteq \mathbb{R}^{n}$. But the situation is better when the boundary $\partial \Omega$ is not too wild.

Prop: Let $f: \Omega \rightarrow \mathbb{R}$ be a function.
Suppose (i) $\Omega \subseteq \mathbb{R}^{n}$ is a bid subset whose boundary $\partial \Omega$ has measure zero (in R^{n})
(ii) f is continuous on Ω.

THEN, f is integrable on Ω.

Proof: Note that the set of discontinuities of the extension \bar{f} is contained in $\partial \Omega$. The result follows from the integrabiliting criteria.

Remark: Since the constant function $f(x)=1, \forall x \in \Omega$ is continuous on Ω, if $\Omega \subseteq \mathbb{R}^{n}$ is a bod subset with measure zero $\partial \Omega$, then we can define the volume of Ω to be

$$
\operatorname{Vol}(\Omega):=\int_{\Omega} 1 d V
$$

The following comparison result is often useful.
Prop: Let $f . g: \Omega \rightarrow \mathbb{R}$ be integrable functions on a bod subset $\Omega \subseteq \mathbb{R}^{n}$ sit. $\partial \Omega$ has measure zero. If $f(x) \leqslant g(x) \quad \forall x \in \Omega$. then

$$
\int_{\Omega} f d V \leq \int_{\Omega} g d V
$$

Proof: Exercise!

